Effects of light quality on the initiation and development of *Skeletonema costatum* blooms

Tomoyuki Shikata, Tadashi Matsubara, Souta Yoshikawa, Atsushi Nukata, Sou Nagasoe, Yasuhiro Yamasaki, Yohei Shimasaki, Yuji Oshima, Ian R. Jenkinson, Tsuneo Honjo
General idea on blooming mechanism of meroplanktonic diatoms

Bloom

Growth

Germination & survival

Vegetative cell

Resting stage cell

light
Light quality changes in water column

Spectral characteristics of underwater light are changed

Absorptions by various substances

How is the effect of light quality on seeding from resting stage cell germination and vegetative cell growth?

Laboratory experiments & Field investigations

Germination & Survival

Growth
Testing the effects of light wave-length on germination of resting stage cells and the survival of cells germinated from bottom sediments.
Methods 1

1. **Suspending** the sediment including many resting stage cells to seawater enriched in nutrients.

2. **Incubating** the suspension under spectral lights with 6 different wave lengths (violet, blue, green, orange, red, and near-infrared) and in the dark.

3. **Counting** vegetative cells, which germinated from resting stage cells, in the suspension every two days after the start of the culture.
Light source for the sediment culture

![Light emitting diode (LED)](image)

Table: Light colors, peak wavelengths, and photon density

<table>
<thead>
<tr>
<th>Light color</th>
<th>Peak wavelength (nm)</th>
<th>Photon density (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Violet</td>
<td>430</td>
<td></td>
</tr>
<tr>
<td>Blue</td>
<td>470</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>530</td>
<td>40</td>
</tr>
<tr>
<td>Orange</td>
<td>623</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>660</td>
<td></td>
</tr>
<tr>
<td>NIR</td>
<td>730</td>
<td></td>
</tr>
<tr>
<td>Dark</td>
<td>—</td>
<td>0</td>
</tr>
</tbody>
</table>

*μmol quanta m$^{-2}$ s$^{-1}$
Culture environment

The incubator in the dark room.

Dark boxes with LEDs in of the incubator.

The dark box with LEDs.
Result 1-1: Diatoms germinated from the sediment

Skeletonema costatum
Thalassiosira minima
Thalassiosira rotula
Chaetoceros sp.
Result 1-2: Progressive appearance of vegetative cells

Only under violet light did the number of resting stage cells increased clearly. Violet light may be necessary for germination process (resting stage cell germination and survival of the germinated cells) of four diatoms.
Testing the effects of light wave-length on vegetative cell growths using cultivated strains
Methods 2

1. **Pre-incubating** cultivated strains of 5 diatoms and 5 flagellates in the dark for two days.

2. **Incubating** the cultivated strains under 6 different spectral lights from LEDs.

3. **Counting** cells everyday.

4. **Calculating** the growth rates.

Tested organisms

Diatoms

- *S. costatum*
- *T. minima*
- Chaetoceros sp.
- *T. rotula*
- *A. gracialis*

Flagellates

- *H. akashiwo*
- *A. sanguinea*
- *P. minimum*
- *P. triestinum*
- *P. dentatum*
Results 2-1: Growth rates under various color light

Under violet and blue light, the growth rates of all strains were higher. →Violet and blue light would be effective for vegetative growth commonly among diatoms and flagellates.
The number of vegetative cell density on day 6 in the sediment culture

- **S. costatum**
 - RS: 125 cells mL⁻¹

- **T. minima**
 - RS: 353 cells mL⁻¹

- **Chaetoceros sp.**
 - RS: 2 cells mL⁻¹

※RS : The density of resting stage cells in the sediment suspension, estimated with the MPN method.

The yield of germinated cells clearly exceeded the original density of resting stage cells only under violet light.
Hypothesis on the germination process

Light

Exposed violet light before germination

Growth

Normal vegetative cell

Various intracellular metabolisms

Resting stage cell

Germination

Abnormal vegetative cell

Death

Not exposed violet light

Please see Shikata et al. (2007) Harmful Algae 6: 700-706
Methods 3: Field investigations

【Sampling point & Frequency】

Hakozaki Fishing Port
(depth 2.5-4.5 m), Hakata Bay, Japan
・・・ Everyday or Every two days

【Items & Period】

----from January to December, 2006----
• **Cell densities of Phytoplankton species** at layers of 0.1 m, 1.5 m & bottom
• **Underwater light intensity** at 0.1 m & 2.5 m layers
 ----from mid-April to mid-July, 2006 (bloom period)----
• **Relative photon flux density of each light spectrum** at
 intervals of 0.5 m from 0.5 to 2.5 m → **Attenuation coefficients**
• **Chl-a concentration** at intervals of 0.1 m from 0.1 m to bottom layer
• Meroplanktonic diatom blooms initiated and developed in early summer, when strong light often penetrated to the bottom layer.
Result 3-2: Temporal dynamics of Spectral-light attenuations & Phytoplankton

- Diatoms started to appear frequently when attenuations of all light spectra were low.
- In late May, early June and late June, meroplanktonic diatoms, flagellates, and flagellates and diatoms, respectively, bloomed.
- Each bloom disappeared within several days.
- Short-wavelength light (violet and blue) attenuated markedly during bloom periods.
Result 3-3: The relationship between attenuation of different light spectrum & Chl-a concentration

Attenuation of violet and blue light was more highly correlated with Chl-a than the other light spectra, and more attenuated for a given level of fluorescence.

→ Short-wavelength light is the most attenuated by phytoplankton.

*Chl-a concentration was correlated with total cell number of phytoplankton (figure not shown).
Overview

Laboratory work

• Violet light may be necessary for germination process (resting stage cell germination and survival of the germinated cells) of four diatoms such as *Skeletonema costatum*.

• Violet and blue light would be effective for vegetative growth commonly among diatoms and flagellates.

Field work in Hakozaki Fishing Port

• Short-wavelength light is the most attenuated by absorption of phytoplankton, and so short wave-length light would be hard to penetrate underwater in the port where phytoplankton biomass is high.

• Underwater light was often strong and attenuation of short-wavelength light was relatively low in bloom initiation periods, when the frequent appearance of vegetative diatom cells started.

• When attenuations of short-wavelength lights were high at blooming period or in bloom initiation, the bloom declined within a short time or did not start.
Violet and Blue lights promote growth of vegetative cells. Attenuation of short-wavelength lights inhibits supply and increase of diatom populations.

Violet light stimulates release of vegetative cells from bottom sediments. Penetration of short-wavelength lights to underwater may be important for initiation and development of meroplanktonic diatom blooms in coastal areas.

Conclusion

- Penetration of short-wavelength lights to underwater may be important for initiation and development of meroplanktonic diatom blooms in coastal areas.

Good morning!
ZaoShang Hao!

Let's go! Tuoba!

Good bye. Zai jian.

Initiation

Development

Blooming
Future tasks to verify the hypothesis

How high light intensity do meroplanktonic diatoms require for the resting stage cell germination and vegetative cell growth?

1. Conducting germination and growth experiment at different light intensity under different light wave length.

2. Measuring real value of light intensity (“not relative” value) of each spectral light in the field using the other spectrophotometer.
Thank you for your kind attention!